Copied to
clipboard

G = C22×C52⋊C4order 400 = 24·52

Direct product of C22 and C52⋊C4

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C22×C52⋊C4, C1028C4, (C2×C10)⋊4F5, C103(C2×F5), C53(C22×F5), C5⋊D5.6C23, C527(C22×C4), (C2×C5⋊D5)⋊9C4, C5⋊D56(C2×C4), (C5×C10)⋊6(C2×C4), (C22×C5⋊D5).7C2, (C2×C5⋊D5).28C22, SmallGroup(400,217)

Series: Derived Chief Lower central Upper central

C1C52 — C22×C52⋊C4
C1C5C52C5⋊D5C52⋊C4C2×C52⋊C4 — C22×C52⋊C4
C52 — C22×C52⋊C4
C1C22

Generators and relations for C22×C52⋊C4
 G = < a,b,c,d,e | a2=b2=c5=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c2, ede-1=d3 >

Subgroups: 1052 in 140 conjugacy classes, 42 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, C23, D5, C10, C10, C22×C4, F5, D10, C2×C10, C2×C10, C52, C2×F5, C22×D5, C5⋊D5, C5⋊D5, C5×C10, C22×F5, C52⋊C4, C2×C5⋊D5, C102, C2×C52⋊C4, C22×C5⋊D5, C22×C52⋊C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, F5, C2×F5, C22×F5, C52⋊C4, C2×C52⋊C4, C22×C52⋊C4

Smallest permutation representation of C22×C52⋊C4
On 40 points
Generators in S40
(1 18)(2 19)(3 20)(4 16)(5 17)(6 15)(7 11)(8 12)(9 13)(10 14)(21 38)(22 39)(23 40)(24 36)(25 37)(26 34)(27 35)(28 31)(29 32)(30 33)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 25 24 23 22)(26 30 29 28 27)(31 35 34 33 32)(36 40 39 38 37)
(1 34 8 36)(2 32 7 38)(3 35 6 40)(4 33 10 37)(5 31 9 39)(11 21 19 29)(12 24 18 26)(13 22 17 28)(14 25 16 30)(15 23 20 27)

G:=sub<Sym(40)| (1,18)(2,19)(3,20)(4,16)(5,17)(6,15)(7,11)(8,12)(9,13)(10,14)(21,38)(22,39)(23,40)(24,36)(25,37)(26,34)(27,35)(28,31)(29,32)(30,33), (1,12)(2,13)(3,14)(4,15)(5,11)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)(36,40,39,38,37), (1,34,8,36)(2,32,7,38)(3,35,6,40)(4,33,10,37)(5,31,9,39)(11,21,19,29)(12,24,18,26)(13,22,17,28)(14,25,16,30)(15,23,20,27)>;

G:=Group( (1,18)(2,19)(3,20)(4,16)(5,17)(6,15)(7,11)(8,12)(9,13)(10,14)(21,38)(22,39)(23,40)(24,36)(25,37)(26,34)(27,35)(28,31)(29,32)(30,33), (1,12)(2,13)(3,14)(4,15)(5,11)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)(36,40,39,38,37), (1,34,8,36)(2,32,7,38)(3,35,6,40)(4,33,10,37)(5,31,9,39)(11,21,19,29)(12,24,18,26)(13,22,17,28)(14,25,16,30)(15,23,20,27) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,16),(5,17),(6,15),(7,11),(8,12),(9,13),(10,14),(21,38),(22,39),(23,40),(24,36),(25,37),(26,34),(27,35),(28,31),(29,32),(30,33)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,25,24,23,22),(26,30,29,28,27),(31,35,34,33,32),(36,40,39,38,37)], [(1,34,8,36),(2,32,7,38),(3,35,6,40),(4,33,10,37),(5,31,9,39),(11,21,19,29),(12,24,18,26),(13,22,17,28),(14,25,16,30),(15,23,20,27)]])

40 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H5A···5F10A···10R
order122222224···45···510···10
size11112525252525···254···44···4

40 irreducible representations

dim111114444
type+++++++
imageC1C2C2C4C4F5C2×F5C52⋊C4C2×C52⋊C4
kernelC22×C52⋊C4C2×C52⋊C4C22×C5⋊D5C2×C5⋊D5C102C2×C10C10C22C2
# reps1616226412

Matrix representation of C22×C52⋊C4 in GL5(𝔽41)

400000
040000
004000
000400
000040
,
400000
01000
00100
00010
00001
,
10000
063400
06000
003201
02204034
,
10000
063400
06000
02203440
003210
,
320000
000140
0193227
00090
06190

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,6,6,0,22,0,34,0,32,0,0,0,0,0,40,0,0,0,1,34],[1,0,0,0,0,0,6,6,22,0,0,34,0,0,32,0,0,0,34,1,0,0,0,40,0],[32,0,0,0,0,0,0,19,0,6,0,0,32,0,1,0,1,2,9,9,0,40,7,0,0] >;

C22×C52⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times C_5^2\rtimes C_4
% in TeX

G:=Group("C2^2xC5^2:C4");
// GroupNames label

G:=SmallGroup(400,217);
// by ID

G=gap.SmallGroup(400,217);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,1444,262,5765,1463]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^5=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^2,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽